How to reach us:
Office:
Telephone:
Fax:
Lab telephone:
|
Member of the following organizations: Universite de Sherbrooke Centre of Excellence in RNA Biology Institut de Pharmacologie de Sherbrooke Positions
Positions are available for postdocs, MSc and PhD students.
Research interestsNumerous regulatory mechanisms are known to control gene expression in response to cellular changes. Most well-characterized among these ones are the mechanisms controlling transcription, translation and mRNA stability. Within the past several years, discoveries have revealed that regulatory RNA structures are often used for transcriptional control of essential genes in bacteria and eukaryotes. Riboswitches are untranslated cis-acting mRNA elements that directly bind cellular metabolites and alter the expression of downstream genes that are almost always associated with biosynthesis or transport of a target metabolite. These RNA switches function in absence of protein cofactors and are essentially metabolite sensors using feedback control mechanisms to appropriately modulate the associated metabolite biosynthetic pathway(s). More than 2% of the genes in certain bacteria are riboswitch regulated where many are expected to be essential under most growth conditions; interference with riboswitch function is thus predicted to result in dramatic destabilization of vital metabolic pathways. It is therefore likely that small compounds can serve as antimicrobial drugs by targeting crucial bacterial riboswitches. In our laboratory, we are studying how metabolites are used by riboswitches to perform their vital biological function. A wide array of techniques is used to monitor the cellular activity of riboswitches and their associated mechanism(s). In addition, we are interested to understand how the folding of RNA is involved in the riboswitch regulation process. Here, given the inherent dynamic nature of riboswitches, we are using Fluorescence Resonance Energy Transfer (FRET) which is one of the most powerful techniques to study the ligand binding-induced RNA folding of riboswitches. We would also like to use lessons learned to develop novel genetic control elements.
In the news
|
|